Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures.

نویسندگان

  • Vishal Agarwal
  • George W Huber
  • W Curtis Conner
  • Scott M Auerbach
چکیده

We have modeled the transformation of cellulose Iβ to a high temperature (550 K) structure, which is considered to be the first step in cellulose pyrolysis. We have performed molecular dynamics simulations at constant pressure using the GROMOS 45a4 united atom forcefield. To test the forcefield, we computed the density, thermal expansion coefficient, total dipole moment, and dielectric constant of cellulose Iβ, finding broad agreement with experimental results. We computed infrared (IR) spectra of cellulose Iβ over the range 300-550 K as a probe of hydrogen bonding. Computed IR spectra were found to agree semi-quantitatively with experiment, especially in the O-H stretching region. We assigned O-H stretches using a novel synthesis of normal mode analysis and power spectrum methods. Simulated IR spectra at elevated temperatures suggest a structural transformation above 450 K, a result in agreement with experimental IR results. The low-temperature (300-400 K) structure of cellulose Iβ is dominated by intrachain hydrogen bonds, whereas in the high-temperature structure (450-550 K), many of these transform to longer, weaker interchain hydrogen bonds. A three-dimensional hydrogen bonding network emerges at high temperatures due to formation of new interchain hydrogen bonds, which may explain the stability of the cellulose structure at such high temperatures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FT-IR Examination of the Development of Secondary Cell Wall in Cotton Fibers

The secondary cell wall development of cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering was examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. Spectra of deuterated cotton fibers did not demonstrate significant changes in their O–H stretching band shapes or positions during development. Only a progressive increase in O–H ...

متن کامل

The Structure of Celluloses

X-ray and neutron fiber diffraction has been used to study cellulose as it is converted from its naturally occurring crystal phase, cellulose I, to an activated crystal phase, cellulose IIII, by ammonia treatment. The detailed crystal structures determined for cellulose Iβ, an intermediate ammonia-cellulose I complex, and cellulose IIII, reveal a structural transition pathway: hydrogen bonded s...

متن کامل

Deformation of cellulose allomorphs studied by molecular dynamics

Cellulose-based materials draw their good mechanical properties from the cellulose crystal. Improved understanding of crystal properties could lead to a wider range of applications for cellulose-based materials, Cellulose crystals show high axial Youngs modulus. Cellulose can attain several allomorphic forms which show unique structural arrangements in terms of both intra-molecular and intermol...

متن کامل

Discovery of Cellulose Surface Layer Conformation by Nonlinear Vibrational Spectroscopy

Significant questions remain in respect to cellulose's structure and polymorphs, particularly the cellulose surface layers and the bulk crystalline core as well as the conformational differences. Total Internal Reflection Sum Frequency Generation Vibrational Spectroscopy (TIR-SFG-VS) combined with conventional SFG-VS (non-TIR) enables selectively characterizing the molecular structures of surfa...

متن کامل

Carbamic acid: molecular structure and IR spectra.

Infrared absorption spectra of mixed H2O, NH3 and 12CO2/13CO2 ices subjected to 1 MeV proton irradiation were investigated. The results of analyses of the spectra suggest formation of carbamic acid at low temperatures. The stability of this compound in the solid phase is attributed to intermolecular hydrogen bonding of the zwitter-ion (NH3+ COO-) structure.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 135 13  شماره 

صفحات  -

تاریخ انتشار 2011